organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

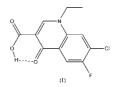
Jian Song, Fu-Hua Xue and Ke-Xia Lou*

College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: loukexia@126.com

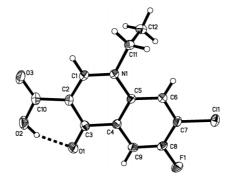
Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.003 Å R factor = 0.036 wR factor = 0.104 Data-to-parameter ratio = 13.8


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

7-Chloro-1-ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid

The title compound, C₁₂H₉ClFNO₃, was synthesized from ethyl 2,4-dichloro-5-fluorobenzoylacetate. The quinoline ring has a same plane with the carboxyl group.

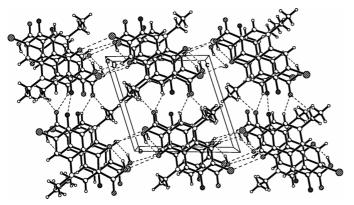

Comment

Norfloxacin [1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid] is a fluorinated quinolone antibacterial agent (Koga et al., 1980). Fluorinated quinolone compounds are characterized by having an F atom at the 6position and a substituted amine group at the 7-position. The title compound, (I), is an intermediate in the synthesis of norfloxacin; the molecular structure of (I) is illustrated in Fig. 1. The quinoline ring has a same plane with the carboxyl group.In the crystal structure of (I),molecules are connected into two-dimensional layers, where are existing $C-H \cdots O$ and C-H···Cl hydrogen bonds.

Experimental

The title compound was prepared according to the method of Irikura (1978) from ethyl 2,4-dichloro-5-fluorobenzoylacetate. Condensation of ethyl 2,4-dichloro-5-fluorobenzoylacetate with triethyl orthoformate by refluxing in acetic anhydride produced ethyl 2-(2,4-dichloro-5-fluorobenzoyl)-3-ethoxyacrylate. The intermediate was reacted without further purification with ethanamine in methylene chloride to afford ethyl 2-(2,4-dichloro-5-fluorobenzoyl)-3-ethanaminoacrylate. This was cyclized by heating with sodium hydride to give 7-chloro-1-ethyl-6-fluoro-1,4-dihydro-3-ethoxycarbonyl-4-oxoquinoline. The ester was hydrolyzed by heating with aqueous KOH in tetrahydrofuran to give 7-chloro-1-ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid. The crude product was purified by

Figure 1


© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The molecular structure of (I), drawn with 30% probability ellipsoids. The intramolecular hydrogen bond is indicated by a dashed line.

Received 7 January 2004

Accepted 15 March 2004

Online 24 April 2004

Figure 2

The crystal structure of (I), viewed along the a axis.

recrystallization from N,N-dimethylformamide. The product (20 mg) was dissolved in dichloromethane (20 ml) and the solution kept at room temperature for 6 d. Slow evaporation produced colorless single crystals of (I) suitable for X-ray analysis.

Crystal data

C ₁₂ H ₉ ClFNO ₃	Z = 2
$M_r = 269.65$	$D_x = 1.603 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.145 (3) Å	Cell parameters from 792
b = 8.915 (4) Å	reflections
c = 9.375 (4) Å	$\theta = 3.7 - 26.4^{\circ}$
$\alpha = 71.896~(6)^{\circ}$	$\mu = 0.35 \text{ mm}^{-1}$
$\beta = 80.025 \ (7)^{\circ}$	T = 293 (2) K
$\gamma = 85.109 \ (7)^{\circ}$	Block, colorless
$V = 558.7 (4) \text{ Å}^3$	$0.36 \times 0.34 \times 0.28 \text{ mm}$
Data collection	

Bruker SMART CCD area-detector diffractometer ω and ω scans Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\rm min}=0.809,\ T_{\rm max}=0.906$ 3221 measured reflections

2273 independent reflections 1745 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.015$ $\theta_{\rm max} = 26.5^{\circ}$ $h = -6 \rightarrow 8$ $k = -11 \rightarrow 10$ $l=-11\rightarrow 11$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0584P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.0322P]
$wR(F^2) = 0.104$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2273 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
165 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O2-H2···Cl1 ⁱ	0.82	2.98	3.546 (2)	129
$O2-H2\cdots O1$	0.82	1.79	2.550 (2)	155

Symmetry code: (i) x, y, 1 + z.

H atoms were positioned geometrically and refined with C-H =0.93–0.98 Å and refined in a riding model with $U_{\rm iso}$ (H) = 1.2 $U_{\rm eq}$ (carrier).

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Irikura, T. (1978). US Patent No. 4 14 719.

- Koga, H., Itoh, A., Murayana, S. & Suzue, S. (1980). J. Med. Chem. 23, 1358-1363.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.